vllm.model_executor.models.roberta ¶
BgeM3EmbeddingModel ¶
Bases: RobertaEmbeddingModel
A model that extends RobertaEmbeddingModel with sparse embeddings.
This class supports loading an additional sparse_linear.pt file to create sparse embeddings as described in https://arxiv.org/abs/2402.03216
Source code in vllm/model_executor/models/roberta.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | |
secondary_weight_files instance-attribute ¶
secondary_weight_prefixes instance-attribute ¶
secondary_weights instance-attribute ¶
secondary_weights = [
(
Source(
model_or_path=model,
revision=None,
prefix=prefix,
allow_patterns_overrides=[filename],
)
)
for filename, prefix in (
zip(
secondary_weight_files,
secondary_weight_prefixes,
)
)
]
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/roberta.py
_build_pooler ¶
_build_pooler(pooler_config: PoolerConfig) -> Pooler
Source code in vllm/model_executor/models/roberta.py
load_weights ¶
Source code in vllm/model_executor/models/roberta.py
RobertaClassificationHead ¶
Bases: Module
Head for sentence-level classification tasks.
Source code in vllm/model_executor/models/roberta.py
__init__ ¶
__init__(model_config: ModelConfig)
Source code in vllm/model_executor/models/roberta.py
RobertaEmbedding ¶
Bases: Module
Source code in vllm/model_executor/models/roberta.py
position_embeddings instance-attribute ¶
position_embeddings = Embedding(
max_position_embeddings,
hidden_size,
padding_idx=padding_idx,
)
token_type_embeddings instance-attribute ¶
token_type_embeddings = Embedding(
type_vocab_size, hidden_size
)
word_embeddings instance-attribute ¶
word_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__ ¶
Source code in vllm/model_executor/models/roberta.py
forward ¶
Source code in vllm/model_executor/models/roberta.py
RobertaEmbeddingModel ¶
Bases: BertEmbeddingModel
A model that uses Roberta to provide embedding functionalities.
Source code in vllm/model_executor/models/roberta.py
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
_build_model ¶
_build_model(
vllm_config: VllmConfig, prefix: str = ""
) -> BertModel | BertWithRope
Source code in vllm/model_executor/models/roberta.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/roberta.py
load_weights ¶
Source code in vllm/model_executor/models/roberta.py
RobertaForSequenceClassification ¶
Bases: Module, SupportsCrossEncoding
A model that uses Roberta to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for embedding operations and customized pooling functions.
Attributes:
| Name | Type | Description |
|---|---|---|
roberta | An instance of BertModel used for forward operations. | |
_pooler | An instance of Pooler used for pooling operations. |
Source code in vllm/model_executor/models/roberta.py
jina_to_vllm_mapper class-attribute instance-attribute ¶
jina_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"layers": "layer",
"mixer.Wqkv": "attention.self.qkv_proj",
"mixer.out_proj": "attention.output.dense",
"norm1": "attention.output.LayerNorm",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm2": "output.LayerNorm",
}
)
roberta instance-attribute ¶
roberta = BertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "bert"),
embedding_class=RobertaEmbedding,
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/roberta.py
embed_input_ids ¶
forward ¶
forward(
input_ids: Tensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
token_type_ids: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/roberta.py
load_weights ¶
filter_secondary_weights ¶
filter_secondary_weights(
all_weights: Iterable[tuple[str, Tensor]],
secondary_weights: list[str],
) -> tuple[
Iterable[tuple[str, Tensor]],
Iterable[tuple[str, Tensor]],
]